Numerical analysis of heat transfer in pulsating turbulent flow in a pipe

نویسندگان

  • Xuefeng Wang
  • Nengli Zhang
چکیده

Convection heat transfer in pulsating turbulent flow with large velocity oscillating amplitudes in a pipe at constant wall temperature is numerically studied. A low-Reynolds-number (LRN) k–e turbulent model is used in the turbulence modeling. The model analysis indicates that Womersley number is a very important parameter in the study of pulsating flow and heat transfer. Flow and heat transfer in a wide range of process parameters are investigated to reveal the velocity and temperature characteristics of the flow. The numerical calculation results show that in a pulsating turbulent flow there is an optimum Womersley number at which heat transfer is maximally enhanced. Both larger amplitude of velocity oscillation and flow reversal in the pulsating turbulent flow also greatly promote the heat transfer enhancement. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface

In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...

متن کامل

Modeling of A Single Turn Pulsating Heat Pipe based on Flow Boiling and Condensation Phenomena

Demand for high-performance cooling systems is one of the most challenging and virtual issues in the industry and Pulsating heat pipes are effective solutions for this concern. In the present study, the best predictor correlations of flow boiling and condensation are taken into account to model a single turn pulsating heat pipe mathematically. These considerations, result in derivation of more ...

متن کامل

The Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow

In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...

متن کامل

Investigation of Entropy Generation Through the Operation of an Unlooped Pulsating Heat Pipe

In the present study, an unlooped pulating heat pipe has been considered with two liquid slugs and three neighboirng vapor plugs.The governing equations such as momentum, energy and mass equations are solved explicitly except the energy equation of liquid slugs.The aim of the present study is to calculate the entropy generation through the performance of a pulsating heat pipe. Additionally, the...

متن کامل

Investigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel

In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Rey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017